skip to main content


Search for: All records

Creators/Authors contains: "Abadi, Masoud G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Problem solvers vary their approaches to solving problems depending on the context of the problem, the requirements of the solution, and the ways in which the problems and material to solve the problem are represented, or representations. Representations take many forms (i.e. tables, graphs, figures, images, formulas, visualizations, and other similar contexts) and are used to communicate information to a problem solver. Engagement with certain representations varies between problem solvers and can influence design and solution quality. A problem solver’s evaluation of representations and the reasons for using a representation can be considered factors in problem-solving heuristics. These factors describe unique problem-solving behaviors that can help understand problem solvers. These behaviors may lead to important relationships between a problem solver’s decisions and their ability to solve a problem and overall quality of the solution. Therefore, we pose the following research question: How do factors of problem-solving heuristics describe the unique behaviors of engineering students as they solve multiple problems? To answer this question, we interviewed 16 undergraduate engineering students studying civil engineering. The interviews consisted of a problem-solving portion that was followed immediately by a semi-structured retrospective interview with probing questions created based on the real time monitoring of the problem-solving interview using eye tracking techniques. The problem-solving portion consisted of solving three problems related to the concept of headloss in fluid flow through pipes. Each of the three problems included the same four representations that were used by the students as approaches to solving the problem. The representations are common ways to present the concept of headloss in pipe flow and included two formulas, a set of tables, and a graph. This paper presents a set of common reasons for why decisions were made during the problem-solving process that help to understand more about the problem-solving behavior of engineering students. 
    more » « less
  2. Engineering practitioners solve problems in various ways; it is plausible that they often rely on graphs, figures, formulas and other representations to reach a solution. How and why engineering practitioners use representations to solve problems can characterize certain problem-solving behaviors, which can be used to determine particular types of problem solvers. The purpose of this research was to determine the relationship between time spent referring to various representations and the justifications for the decisions made during the problem-solving process of engineering practitioners. A persona-based approach was used to characterize the problem-solving behavior of 16 engineering practitioners. Utilizing eye tracking and retrospective interview techniques, the problem-solving process of engineering practitioners was explored. Three unique problem-solver personas were developed that describe the behaviors of engineering practitioners; a committed problem solver, an evaluative problem, and an indecisive problem solver. The three personas suggest that there are different types of engineering practitioner problem solvers. This study contributes to engineering education research by expanding on problem-solving research to look for reasons why decisions are made during the problem-solving process. Understanding more about how the differences between problem solvers affect the way they approach a problem and engage with the material presents a more holistic view of the problem-solving process of engineering practitioners. 
    more » « less